1. y=-x²+2x+3
а) функция пересекает ось ОХ в точках х=-1 и х=3, это и есть нули функции;
б) уgt;0 на промежутке (-1;3), уlt;0 на промежутках (-∞;-1)∪(3;+∞);
в) функция возрастает на промежутке (-∞:1) и убывает (1;+∞);
г) наибольшее значение функции y=4;
д) область значений функции (-∞;4).
2. y=2x²+8x
а) нули функции
2x²+8x=0
2x(x+4)=0
2x=0 x+4=0
x=0 x=-4
б) находим точки экстремума функции
y=(2x²+8x)=4x+8
4x+8=0
4x=-8
x=-2
- +
-------------------(-2)--------------------
На промежутке (-∞;-2) производная функции lt;0, следовательно функция убывает.
На промежутке (-2;+∞) производная функции gt;0, следовательно функция возрастает.
в) Точка экстремума х=-2, в этой точке значение функции
у=2*(-2)²+8(-2)=8+(-16)=-8
Производная в точке х=-2 меняет знак с "-" на "+" значит это точка минимума. График функции парабола ветви которой направлены вверх (коэффициент при х² положительный), следовательно область значений функции (-8;+∞).