Lodynaz 27 октября 2019 в 12:26

Докажите, что графики функций f(x)=(6+x-x^2)/x+2 и h(x)=1-2x не имеют общих точек

Даны две функции. Доказать что они не имеют общих точек.

Для того чтобы функции имели общие точки необходимо найти значение "х", при котором значение "у" будет одинаковым у обеих функций. Для этого достаточно их приравнять и решить уравнение.

displaystyle frac{6+x-x^2}{x+2}=1-2x

ОДЗ х≠-2

displaystyle frac{6+x-x^2}{x+2}= frac{(1-2x)(x+2)}{x+2}  amp;#10;amp;#10;

displaystyle6+x-x^2=x+2-2x^2-4xamp;#10;amp;#10;displaystyle x^2+4x+4=0amp;#10;amp;#10;displaystyle (x+2)^2=0amp;#10;amp;#10;displaystyle x=-2amp;#10;amp;#10;amp;#10;amp;#10;amp;#10;

т.к. при решении уравнение х=-2 и одновременно х≠-2

значит нет такого значения "х", при котором у функций значения были бы равны.

Значит эти функции не имеют общих точек
Вычисления
Для комментирования необходимо зарегистрироваться на сайте