Афиноген 3 ноября 2019 в 05:54

Для чисел a и b справедливы неравенства 14,7⩽ a ⩽15,5 и 5⩽ b ⩽7. Между какими ближайшими целыми числами заключено число: а) a+b б) a×b в) a-b г) a:b

1) Пусть c=a+b. Наименьшее значение c равно 14,7+5=19,7, а наибольшее - 15,5+7=22,5. Значит, число с заключено между целыми числами 19 и 23.
2) Пусть c=a*b. Наименьшее значение c равно 14,7*5=73,5, а наибольшее - 15,5*7=108,5. Значит, число с заключено между целыми числами 73 и 109.
3) 
Пусть c=a-b. Наименьшее значение c равно 14,7-7=7,7, а наибольшее - 15,5-5=10,5. Значит, число с заключено между целыми числами 7 и 11.
4) 
Пусть c=a/b. Наименьшее значение c равно 14,7/7=2,1, а наибольшее - 15,5/5=3,1. Значит, число с заключено между целыми числами 2 и 4.
Вычисления
Для комментирования необходимо зарегистрироваться на сайте