Datus 3 ноября 2019 в 06:24

В прямоугольнике abcd проведена диагональ ас известно что CAB=2*ACB Найдите периметр

Треугольник АВС - прямоугольный, ∠В=90°, поскольку у в прямоугольнике все углы =90°
Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС.
∠А+∠В+∠С=90°
Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС
∠А=2*∠С, выходит
2*∠С+90°+∠С=180°
3*∠С=90°
∠С=30°.
Значит ∠А=2*∠С=2*30°=60°.
Рассмотрим прямоугольный треугольник АВС дальше:
АС-гипотенуза, АВ и ВС - это катеты
cos ∠А=АВ/АС
sin ∠А=ВС/АС

cos ∠А=cos 60°=1/2=0,5
sin ∠А=sin 60°=√3/2=0,5√3

cos ∠А=АВ/АС
0,5=АВ/АС, отсюда АВ=0,5АС

sin ∠А=ВС/АС
0,5√3=ВС/АС, отсюда ВС=0,5АС√3

У прямоугольника противоположные стороны равны, значит АВ=СД=0,5АС, а ВС=АД=0,5АС√3

Периметр равен сумме длины всех сторон прямоугольника, то есть
Периметр=АВ+ВС+СД+АД
Периметр=0,5АС+ 0,5АС√3+ 0,5АС+0,5АС√3
Периметр=АС+АС√3
Периметр=АС*(1+√3)

Ответ: периметр = АС*(1+√3), где АС - это диагональ прямоугольника
Геометрические задачи
Для комментирования необходимо зарегистрироваться на сайте