N⁴ - 12n² + 16 = 0
Заменим n² = x:
x² - 12x + 16 = 0 D = b²-4ac = 144 - 64 = 80 = (4√5)²
x₁ = (-b + √D)/2a = (12 + 4√5)/2 = 6 + 2√5
x₂ = (-b - √D)/2a = (12 - 4√5)/2 = 6 - 2√5
n² = 6 + 2√5 n² = 6 - 2√5
n = √(6+2√5) n = √(6-2√5)
n = -√(6+2√5) n = -√(6-2√5)
проверим: (√(6+2√5))⁴ - 12(√(6+2√5))² + 16 = (6+2√5)² - 12(6+2√5) + 16 =
= 36 + 24√5 + 20 - 72 - 24√5 + 16 = 72 - 72 = 0
(√(6-2√5))⁴ - 12(√(6-2√5))² + 16 = (6-2√5)² - 12(6-2√5) + 16 =
= 36 - 24√5 + 20 - 72 + 24√5 + 16 = 72 - 72 = 0
Ответ: {√(6+2√5); √(6-2√5); -√(6+2√5); -√(6-2√5)}
Y=n²
y²-12e+16=0
y=6+-√(36-16)=6+-2√5
n=+-√(6+-2√5))