Центр вписанной в трапецию окружности лежит в точке пересечения её биссектрис.
биссектрисы смежных углов трапеции пересекаются под прямым углом,
поэтому треугольник с вершиной в центре окружности и основанием - боковой наклонной стороной трапеции - прямоугольный с прямым углом при вершине, которая является центром окружности.
радиус перпендикулярен касательной =gt; искомая величина h - это длина перпендикуляра опущенного из прямого угла =gt;
h^2 = ab = 25 * 36
h = 5 * 6 = 30
Ответ: 30.