Александр 26 ноября 2019 в 05:09

Полное решение пожалуйста1) x^{3}-4 x^{2} + x^{} +6=0. \\   2) x^{4}+5 x^{3} + 5 x^{2} -5 x^{}-6=0

x^4+5x^3+5x^2-5x-6=0

Методом подбора находим значение, удовлетворяющее нашему уравнению. Это 1. Делим многочлен на (х-1):

arraycolsep=0.05emamp;#10;begin{array}{rrrrr@{,}r|l}amp;#10;x^4amp;+5x^3amp;+5x^2amp;-5xamp;-6amp;amp;,x-1\amp;#10;cline{7-7}amp;#10;x^4amp;-x^3amp;amp;amp;amp;amp;,x^3+6x^2+11x+6\amp;#10;cline{1-2}amp;#10;amp;6x^3amp;+5x^2amp;amp;,\amp;#10;amp;6x^3amp;-6x^2amp;amp;\amp;#10;cline{2-3}amp;#10;amp;amp;11x^2amp;-5xamp;,\amp;#10;amp;amp;11x^2amp;-11xamp;\amp;#10;cline{3-4}amp;#10;amp;amp;amp;6xamp;-6,\amp;#10;amp;amp;amp;6xamp;-6\amp;#10;cline{4-5}amp;#10;amp;amp;amp;amp;0\amp;#10;end{array}

(x^3+6x^2+11x+6)(x-1)=0\\amp;#10;x^3+6x^2+11x=0

arraycolsep=0.05emamp;#10;begin{array}{rrrrr@{,}r|l}amp;#10;amp;x^3amp;+6x^2amp;+11xamp;+6amp;amp;,x+1\amp;#10;cline{7-7}amp;#10;amp;x^3amp;+x^2amp;amp;amp;amp;,x^2+5x+6\amp;#10;cline{1-4}amp;#10;amp;amp;5x^2amp;+11xamp;,\amp;#10;amp;amp;5x^2amp;+5xamp;\amp;#10;cline{2-4}amp;#10;amp;amp;amp;6xamp;+6,\amp;#10;amp;amp;amp;6xamp;+6\amp;#10;cline{4-5}amp;#10;amp;amp;amp;amp;0\amp;#10;end{array}

(x^2+5x+6)(x-1)(x+1)=0\\amp;#10;x^2+5x+6=0\amp;#10;D=25-24=1; sqrt D=1\\amp;#10;x_{1/2}= frac{-5pm1}{2}\\amp;#10;boxed{x_1=-3}\amp;#10;boxed{x_2=-2} \\amp;#10;x^2-1=0\amp;#10;x^2=1\amp;#10;boxed{x=pm1}

Ответ: x_1=-3; x_2=-2;  x_3=-1; x_4=1

***************************************************************

x^3-4x^2+x+6=0\\amp;#10;arraycolsep=0.05emamp;#10;begin{array}{rrrrr@{,}r|l}amp;#10;amp;x^3amp;-4x^2amp;+xamp;+6amp;amp;,x+1\amp;#10;cline{7-7}amp;#10;amp;x^3amp;+x^2amp;amp;amp;amp;,x^2-5x+6\amp;#10;cline{1-4}amp;#10;amp;amp;-5x^2amp;+xamp;,\amp;#10;amp;amp;-5x^2amp;-5xamp;\amp;#10;cline{2-4}amp;#10;amp;amp;amp;6xamp;+6 ,\amp;#10;amp;amp;amp;6xamp;+6\amp;#10;cline{4-5}amp;#10;amp;amp;amp;amp;0\amp;#10;end{array}

(x^2-5x+6)(x+1)=0\\amp;#10;x^2-5x+6=0\amp;#10;D=25-24=1;  sqrt D=1;\\amp;#10;x_{1/2}= frac{5pm1}{2} \\amp;#10;boxed{x_1=2}\amp;#10;boxed{x_2=3}\\amp;#10;x+1=0\amp;#10;boxed{x_3=-1}

Ответ: x_1=2;  x_2=3;  x_3=-1
Вычисления
Для комментирования необходимо зарегистрироваться на сайте