Алексей 26 ноября 2019 в 05:33

Разложите на множители:
1) b²-d²;
2) x²-1;
3) -x²+1;
4) 36-c²;
5) 4-25a²;
6) 49a²-100;
7) 900-81k²;
8) 16x²-121y²;
9) b²c²-1;
10) 1/4x²-1/9y²;
11) -4a²b²+25;
12) 144x²y²-400;
13) a²b²c²-1;
14) 100a²-0,01b²;
15) a⁴-b²;
16) p²t²-0,36k²d²;
17) y^10-9;
18) 4x^12-1.11/25y^16
y^10- y в десятой. степени.
4х^12- 4х в двенадцатой степени.
25у^16- 25у в шестнадцатой степени.
1.11/25- одна целая одиннадцать двадцать пятых.

Представьте многочлен в виде квадрата суммы или квадрата разности двух выражений:
1) a²+2a+1;
2) x²-12x+36;
3) y²-18y-81;
4) 100-20c+c²;
5) a²-6ab+9b²;
6) 9a²-30ab+25b².

1)(b-d)×(b+d)
2)(х-1)×(х+1)
3)-(1-х)×(х+1)
4)(6-c)×(6+c)
5)(2-5a)×(2+5a)
6)(7a-10)×(7a+10)
7)(30-9k)×(30+9k)
8)(4х-11y)×(4х+11y)
9)(bc-1)×(bc+1)
10)(0,5х-1/3y)×(0,5х+1/3y)
11)(5-2ab)×(5+2ab)
12)(12xy-20)×(12хy+20)
13)(abc-1)×(abc+1)
14)(10a-0,1b)×(10a+0,1b)
15)(a2-b)×(a2+b)
16)(pt-0,6kd)×(pt+0,6kd)
с 17 до этого момента не знаю
1)(а+1) в квадрате
2)(х-6) в квадрате
3)(у-9) в квадрате
4)(10-с) в квадрате
5)(а-3b) в квадрате
6)(3а-5b) в квадрате
Вычисления
Для комментирования необходимо зарегистрироваться на сайте