Определённому интегралу геометрически соответствует площадь некоторой фигуры.
Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение:
-x²+4x-1=-x-1
-x²+4x-1+x+1=0
-x²+5x=0
x(5-x)=0
x=0 5-x=0
x=5
Нашли верхний 5 и нижний 0 пределы интегрирования.
Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле:
В нашем примере парабола расположена выше прямой -x-1
Ответ: S=20(5/6) ед²